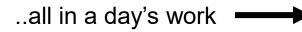



#### **UiT** The Arctic University of Norway



22 Nov. 2024: Microplastics and Human Health: Sources, Exposure, and Impact


# The environmental impact of polymer plastics used in clinical dentistry

Asbjørn Jokstad, DDS, Dr. odont.



 Dentists use large quantities of synthetic polymers for multiple purposes. Estimates of waste, polymer compound elution and the ecological impact are inconsistent.





- Dentists use large quantities of synthetic polymers for multiple purposes. Estimates of waste, polymer compound elution and the ecological impact are inconsistent.
- We systematically reviewed the literature to estimate the impact from polymer: 1. Extraoral use (personal protection, clinic items)

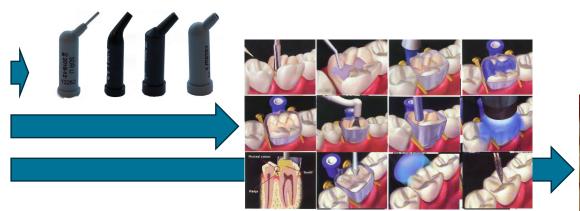
| Compound                             | acronym     | Items in clinic waste                                             |
|--------------------------------------|-------------|-------------------------------------------------------------------|
| Acrylonitrile Butadiene Styrene      | ABS         | Container, handle, suture, tray                                   |
| Latex rubber                         |             | Dressing, elastics, gloves, washer                                |
| Synthetic rubber / AKA «Nitrile»     |             | Dressing, elastics, gloves, washer                                |
| Plastics, general                    |             | Lid, packaging, tube                                              |
| Polyamide 6                          | Nylon 6     | Bag, drape, dressing, toothbrush                                  |
| Polycarbonate                        | PC          | Occludator, tray, tube                                            |
| Polychloroprene / AKA "Neoprene"     |             | Gloves                                                            |
| Polyester, non-woven                 |             | Disinfectant wipe                                                 |
| Polyethylene film                    |             | Bag, cover, drape, dressing, packaging, visor                     |
| Polyethylene resin, high/low density | LDPE / HDPE | Brush, liner, mixing tips(h), packaging(l/h), tube(h), syringe(h) |
| Polyethylene terephthalate           | PET         | Drape, glove, packaging                                           |
| Polyethylene, general                | PE          | Glove, packaging, pouch, strips, syringe, tube                    |
| Polyisoprene                         |             | Gloves                                                            |
| Polypropylene injection-mould        | PP          | Bowl, brush, cups, , quiver, suture, syringe, tube                |
| Polypropylene film / AKA "Prolene"   | PP          | Bag, drape, gown, hood, mask, packaging, wrap                     |
| Polystyrene                          | PS          | Packaging                                                         |
| Polyurethane rigid/flexible foam     | PU          | Brush, foam cube, tube, wound dressing                            |
| Polyvinyl chloride                   | PVC         | Bowl, drape, tube                                                 |
| Phthalates                           |             | Unknown quantities / qualities, < 1%                              |



- Dentists use large quantities of synthetic polymers for multiple purposes. Estimates of waste, polymer compound elution and the ecological impact are inconsistent.
- We systematically reviewed the literature to estimate the impact from polymer: 1. Extraoral use 2. Intra-oral devices

| Compound                                                  | acronym     | Items                                                                             |
|-----------------------------------------------------------|-------------|-----------------------------------------------------------------------------------|
| Acrylonitrile Butadiene Styrene                           | ABS         | Orthodontics                                                                      |
| Ethylene glycol dimethacrylate                            | EGDM        | Prosthesis                                                                        |
| Ethylene-vinyl acetate / AKA poly(ethylene-vinyl acetate) | EVA/PEVA    | Soft splint                                                                       |
| Polycarbonate                                             | PC          | Orthodontics, prosthesis, mouthguards/splints/ retainers                          |
| Poly(methyl methacrylate)                                 | PMMA        | Orthodontics, prosthesis, mouthguards/splints/ retainers                          |
| Polyamide 6 / AKA Nylon                                   | Nylon 6     | Orthodontics, prosthesis, suture                                                  |
| Polycaprolactone                                          | PCL         | Drug delivery, grafting                                                           |
| Polychloroprene / AKA "Neoprene"                          | CR          | Barrier                                                                           |
| Polyetherether ketone                                     | PEEK        | Implants, orthodontics, prosthesis                                                |
| Polyethylene glycol                                       | PEG         | Gels, impressions, lubricant                                                      |
| Polyethylene resin, high/low density                      | LDPE / HDPE | Prosthesis lining                                                                 |
| Polyethylene terephthalate                                | PET         | Orthodontics                                                                      |
| Polyethylene terephthalate glycol-modified                | PET-G       | Orthodontics, prosthesis, vacuum formed mouthguards/splints/ retainers            |
| Polylactic Acid                                           | PLA         | Drug delivery, grafting                                                           |
| Polyoxymethylene / AKA Acetal resin                       | POM         | Prosthesis (alternative re. Allergy)                                              |
| Polycarbonate-modified bis-GMA                            | PC-bisGMA   | Orthodontics, prosthesis, vacuum formed mouthguards/splints/ retainers            |
| Polystyrene                                               | PS          | Prosthesis (alternative re. Allergy)                                              |
| Polytetrafluoroethylene                                   | PTFE        | Barrier (GBR), barrier (cement, screw hole), spacer (restorations), crown fitting |
| Polyurethane, thermoplastic                               | TPU         | Orthodontics, prosthesis, vacuum formed mouthguards/splints/ retainers            |
| Polyvinyl chloride                                        | PVC         | Orthodontics, prosthesis, vacuum formed mouthguards/splints/ retainers            |
| Polyvinylidene fluoride                                   | PVDF        | Orthodontics                                                                      |
| Synthetic rubber / AKA «Nitrile»                          |             | Barrier membrane                                                                  |




- Dentists use large quantities of synthetic polymers for multiple purposes. Estimates of waste, polymer compound elution and the ecological impact are inconsistent.
- We systematically reviewed the literature to estimate the impact from polymer 1. Extraoral use 2. Intra-oral devices 3. Restorative materials

|                                                |                    | Additives                                                                                      |                                  |                       |  |  |  |
|------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------|----------------------------------|-----------------------|--|--|--|
| Methacrylate ester monomers                    | acronym            | Accelerator                                                                                    | Parbenate                        |                       |  |  |  |
| Bisphenol A glycidyl methacrylate / AKA Bowen  | Bis-GMA            | Antioxydant (inhibitor)                                                                        | BHT                              |                       |  |  |  |
| monomer                                        |                    | Photoinitiator                                                                                 | Camphorquinone                   | CQ                    |  |  |  |
| Bisphenol A dimethacrylate                     | Bis-DMA            | Chemical initiator                                                                             | Benzoyl peroxide                 | BPO                   |  |  |  |
| Bisphenol A polyethoxy dimethacrylate          | Bis-MPEPP / BPEDMA | Photoinitiator                                                                                 | ethyl 4-(dimethylamino) benzoate | EDMAB                 |  |  |  |
| Dihydroxyethyl acrylate (cross-linking)        | DHEA               | Photostabilizer                                                                                | Benzophenone-3                   | BP-3                  |  |  |  |
| Ethoxylated bisphenol-A glycol dimethacrylate  | Bis-EMA / EBPADMA  | Photostabilizer                                                                                | Drometrizole trisiloxane         | DTS                   |  |  |  |
| Ethylene glycol dimethacrylate (cross-linking) | EGDMA              | Filler siloxanes (Multipurpose: 60-70% 0.04, 0.2-3μm; nanocomposite: 72-79% 0.002-0.075 μm,    |                                  |                       |  |  |  |
| Glycidyl methacrylate                          | GMA                | microcomposite: 32-50% 0.04 μm, bulk fill 59-80% 0.04, 0.2-20μm; flow: 42-62% 0.04, 0.2-3μm; σ |                                  |                       |  |  |  |
| Hexane diol dimethacrylate                     | HEDMA              | 3-methacryloxypropyltrimethoxy                                                                 |                                  |                       |  |  |  |
| Hydroxyethyl methacrylate                      | HEMA               | 3-glycidoxypropyl)-dimethyletho                                                                | GPMES                            |                       |  |  |  |
| Isobutyl methacrylate                          | IBMA               | Degradation products                                                                           |                                  |                       |  |  |  |
| Methyl methacrylate                            | MMA                | Bishydroxypropoxyphenylpropa                                                                   | Bis-HPPP                         |                       |  |  |  |
| Polycarbonate-modified bis-GMA                 | PC-bisGMA          | Bismethacryloxypropoxyphenyl                                                                   | propane                          | Bis-PMA               |  |  |  |
| Tricyclodecane - dihydroxyethyl acrylate       | TCD-di-HEA         | Bisphenol A diglycidyl ether                                                                   |                                  | BADGE / DGEBA         |  |  |  |
| Triethylene glycol dimethacrylate              | TEGDMA             | Bisphenol A ethoxylate methacry                                                                | ylate                            | Bis-EMA(3) /(6) /(10) |  |  |  |
| Trimethylolpropane trimethacrylate             | TMP-TMA            | Bisphenol F diglycidyl ether                                                                   |                                  | BFDGE / BFDGE*2H2O    |  |  |  |
| Urethane dimethacrylate                        | UDMA               | Urethane dimethacrylate derivat                                                                |                                  | UDMA-D2               |  |  |  |
| Urethane modified bis-GMA dimethacrylate       | U-bisGMA           | Contaminants (and unreacted m                                                                  |                                  |                       |  |  |  |
|                                                |                    | Bisphenol A                                                                                    |                                  | BPA                   |  |  |  |
|                                                |                    | Methacrylic acid                                                                               |                                  | MAA                   |  |  |  |
|                                                |                    | Triethylene glycol                                                                             |                                  | TEG                   |  |  |  |
|                                                |                    | *Unreacted monomer componen                                                                    | its                              | e.g. HEMA, MMA, TEG   |  |  |  |

- Dentists use large quantities of synthetic polymers for multiple purposes. Estimates of waste, polymer compound elution and the ecological impact are inconsistent.
- We systematically reviewed the literature to estimate the impact from polymer 1. Extraoral use 2. Intra-oral devices 3. Restorative materials

|                                                |                    | Additives                                                                                      |                                  |                       |  |  |  |
|------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------|----------------------------------|-----------------------|--|--|--|
| Methacrylate ester monomers                    | acronym            | Accelerator                                                                                    | Parbenate                        |                       |  |  |  |
| Bisphenol A glycidyl methacrylate / AKA Bowen  | Bis-GMA            | Antioxydant (inhibitor)                                                                        | BHT                              |                       |  |  |  |
| monomer                                        |                    | Photoinitiator                                                                                 | Camphorquinone                   | CQ                    |  |  |  |
| Bisphenol A dimethacrylate                     | Bis-DMA            | Chemical initiator                                                                             | Benzoyl peroxide                 | BPO                   |  |  |  |
| Bisphenol A polyethoxy dimethacrylate          | Bis-MPEPP / BPEDMA | Photoinitiator                                                                                 | ethyl 4-(dimethylamino) benzoate | EDMAB                 |  |  |  |
| Dihydroxyethyl acrylate (cross-linking)        | DHEA               | Photostabilizer                                                                                | Benzophenone-3                   | BP-3                  |  |  |  |
| Ethoxylated bisphenol-A glycol dimethacrylate  | Bis-EMA / EBPADMA  | Photostabilizer                                                                                | Drometrizole trisiloxane         | DTS                   |  |  |  |
| Ethylene glycol dimethacrylate (cross-linking) | EGDMA              | Filler siloxanes (Multipurpose: 60-70% 0.04, 0.2-3μm; nanocomposite: 72-79% 0.002-0.075 μm,    |                                  |                       |  |  |  |
| Glycidyl methacrylate                          | GMA                | microcomposite: 32-50% 0.04 μm, bulk fill 59-80% 0.04, 0.2-20μm; flow: 42-62% 0.04, 0.2-3μm; σ |                                  |                       |  |  |  |
| Hexane diol dimethacrylate                     | HEDMA              | 3-methacryloxypropyltrimethoxy                                                                 |                                  |                       |  |  |  |
| Hydroxyethyl methacrylate                      | HEMA               | 3-glycidoxypropyl)-dimethyletho                                                                | GPMES                            |                       |  |  |  |
| Isobutyl methacrylate                          | IBMA               | Degradation products                                                                           |                                  |                       |  |  |  |
| Methyl methacrylate                            | MMA                | Bishydroxypropoxyphenylpropa                                                                   | Bis-HPPP                         |                       |  |  |  |
| Polycarbonate-modified bis-GMA                 | PC-bisGMA          | Bismethacryloxypropoxyphenyl                                                                   | propane                          | Bis-PMA               |  |  |  |
| Tricyclodecane - dihydroxyethyl acrylate       | TCD-di-HEA         | Bisphenol A diglycidyl ether                                                                   |                                  | BADGE / DGEBA         |  |  |  |
| Triethylene glycol dimethacrylate              | TEGDMA             | Bisphenol A ethoxylate methacry                                                                | ylate                            | Bis-EMA(3) /(6) /(10) |  |  |  |
| Trimethylolpropane trimethacrylate             | TMP-TMA            | Bisphenol F diglycidyl ether                                                                   |                                  | BFDGE / BFDGE*2H2O    |  |  |  |
| Urethane dimethacrylate                        | UDMA               | Urethane dimethacrylate derivat                                                                |                                  | UDMA-D2               |  |  |  |
| Urethane modified bis-GMA dimethacrylate       | U-bisGMA           | Contaminants (and unreacted m                                                                  |                                  |                       |  |  |  |
|                                                |                    | Bisphenol A                                                                                    |                                  | BPA                   |  |  |  |
|                                                |                    | Methacrylic acid                                                                               |                                  | MAA                   |  |  |  |
|                                                |                    | Triethylene glycol                                                                             |                                  | TEG                   |  |  |  |
|                                                |                    | *Unreacted monomer componen                                                                    | its                              | e.g. HEMA, MMA, TEG   |  |  |  |

- Dentists use large quantities of synthetic polymers for multiple purposes. Estimates of waste, polymer compound elution and the ecological impact are inconsistent.
- We systematically reviewed the literature to estimate the ecologic impact from polymer use:
- 1. Extraoral use
- 2. Intra-oral devices
- 3. Restorative materials
  - manufacturing
  - clinical handling
  - degradation





## MethodsPROSPERO registration

#### PROSPERO International prospective register of systematic reviews

Search | Log in | Join

Home | About PROSPERO | How to register | Service information

**NIHR** National Institute for Health and Care Research

Click to **show your search history and hide search results**. Open the **Filters** panel to find records with specific characteristics (e.g. all reviews about cancer or all diagnostic reviews etc). See our **Guide to Searching** for more details.

#### Click to hide the standard search and use the Covid-19 filters.

| Q CRD42023472616                                                     |                                                             | Θ         | Go        | MeSH       | Clear filters | Show filters    |          |
|----------------------------------------------------------------------|-------------------------------------------------------------|-----------|-----------|------------|---------------|-----------------|----------|
| First Previous Next Last (page 1 of 1)                               |                                                             |           |           |            |               |                 |          |
| 1 record found for CRD42023472616 Show checked records only   Export |                                                             |           |           |            |               |                 |          |
| Deviatored                                                           | Title                                                       |           |           |            |               | Type 🚖 Review s | status 🔺 |
| Registered 🖨                                                         |                                                             |           |           |            |               |                 | -        |
| 27/10/2023                                                           | Polymer use in oral health care set health [CRD42023472616] | tings and | d impacts | on human a |               | Review O        | Ť        |

### Methods

- PROSPERO (CRD42023472616 Polymer use in oral health care settings and impacts on human and planetary health)
- Boolean search strategies adapted to different bibliometric databases & grey literature + www sites & resources

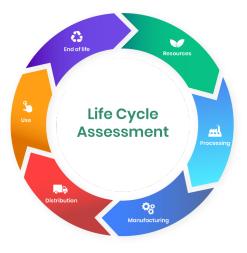
#### Pubmed search

(dentist OR "dental health services"[mesh] OR "oral health care" OR "Dentistry"[mesh]) AND ("Polymers"[mesh] OR "Organic Chemicals"[mesh] OR "plastic\*"[tw] OR "polymer\*"[tw] OR "Resin\*"[tw] OR "acryl\*"[tw]) AND ("Environmental Pollution"[MESH] OR "waste management"[MESH] OR "ecology"[MESH] OR "environment\*"[tw] OR "waste\*"[tw] OR "pollut\*"[tw] OR "ecolog\*"[tw]) n=1911

(dentist OR "dental health services"[mesh] OR "oral health care" OR "Dentistry"[mesh]) AND ("Protective devices"[mesh] OR "surgical equipment"[MESH]) AND ("Environmental Pollution"[MESH] OR "waste management"[MESH] OR "ecology"[MESH] OR "environment\*"[tw] OR "waste\*"[tw] OR "pollut\*"[tw] OR "ecolog\*"[tw]) n=354

(dentist OR "dental health services"[mesh] OR "oral health care" OR "Dentistry"[mesh]) AND "Conservation of Natural Resources"[Mesh] n=260

#### https://iebh.github.io/sra-polyglot/#


| 1 | SRA Polyglot<br>search translator | • • • | Cochrane Library<br>Embase (OVID)<br>EBSCOhost: (ERIC + CINAHL + Risk Management<br>Reference Center + GreenFILE + MEDLINE + eBook<br>Open Access Collection + AMED (The Allied and<br>Complementary Medicine Database)<br>ScienceDirect<br>Web Of Science |  |
|---|-----------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|   |                                   |       | +                                                                                                                                                                                                                                                          |  |

<u>Grey</u>: IADR abstracts + Google Scholar + ProQuest Dissertations & Theses Global <u>Registers:</u> Prospero (registered SRs)

<u>Websites:</u> World Health Organization + NDAs: Amer. DA, Aus DA, Brit. DA, Norwegian DA <u>Organisations:</u> Centre for Sustainable Healthcare U.K. + FDI World Dental Federation + Environmental defence + Arup, Health Care Without Harm <u>HealthLCA</u> (Life cycle analyses)

Citation lists hand-searching

#### HealthcareLCA gallery about ~ database search charts tutorials **A DATABASE OF HEALTHCARE'S ENVIRONMENTAL** IMPACTS 14 98 Explore database TITITI



HealthcareLCA

### Database summary

7,000 impact values, 2,000 products and processes, 1,000 authors, 600 institutions, 300 data sources, 190 countries, 20 years

From individual pharmaceuticals to entire health systems, researchers around the world are working hard to assess the environmental impacts of different aspects of healthcare.

HealthcareLCA serves as an up-to-date repository for this work, bringing together

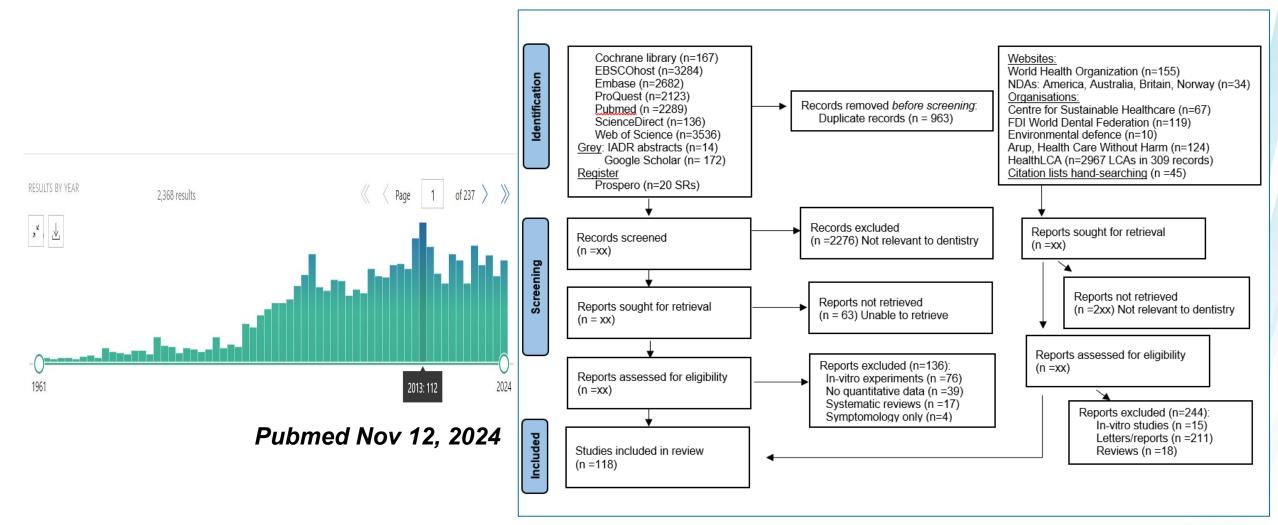
#### Jump to chart:

- cumulative data sources
- geographical distribution
- scale of analysis
- author institutions
- income category
- world region
- healthcare field
- disciplinary coverage
- impact categories

### Methods

- PROSPERO (CRD42023472616 Polymer use in oral health care settings and impacts on human and planetary health)
- Boolean search strategies adapted to different bibliometric databases & grey literature + www sites & resources
- According to AMSTAR & PRISMA
  - One investigator identified publications
  - Two independent investigators in duplicate:
    - Examined contents for estimates of waste, pollution or material component elution -> consensus
    - Extracted data -> consensus
    - Study characteristics, study methodology & risk of bias using checklists validated for study design -> consensus
  - Extracted data subjected to meta-analyses suitable to the type of statistical data, if feasible (Revman). Alternatively, findings reported according to the Synthesis-Without-Meta-analysis (SWiM) methodology

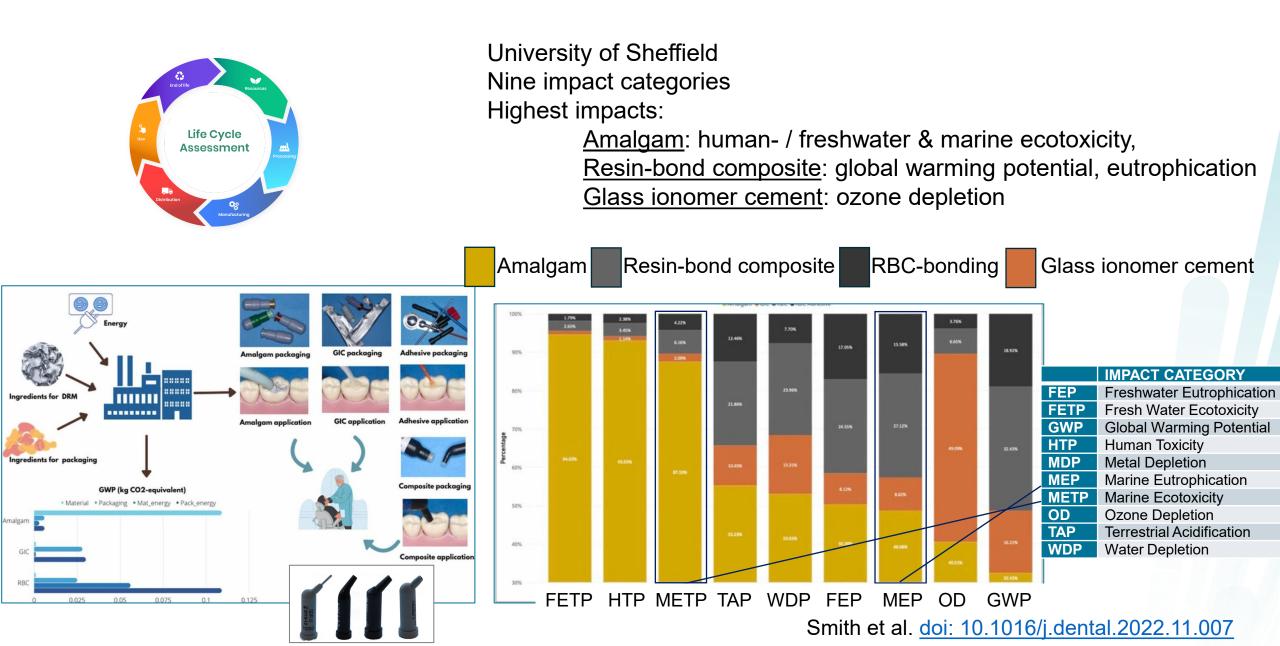
### Eligible outcomes and measures within 5 domains


| 1. Environmental<br>impact                                                                                 | 2. NMSPs qualities<br>or quantities                           | 3. NMSPs qualities<br>or quantities                           | 4. Monomer elution<br>or NMSPs qualities<br>or quantities | 5. Monomer elution<br>or NMSPs qualities<br>or quantities |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
| SP items & devices                                                                                         | Pollution, ambient                                            | in waste                                                      | in body fluids or                                         | in the local                                              |
| <ul><li>manufacturing</li><li>procurement</li></ul>                                                        | air & wastewater                                              |                                                               | tissues                                                   | environment                                               |
| <ul><li>handling</li><li>disposal</li></ul>                                                                | mass (mg, g, kg, ton)                                         | mass (mg, g, kg, ton)<br>or the number of                     | ng/ml, ppm, ppb                                           | ng/ml, ppm, ppb                                           |
| Validated life cycle                                                                                       |                                                               | single-use items                                              |                                                           |                                                           |
| appraisal (LCA) methodology                                                                                | per intervention or patient or clinic                         | per intervention, patient or clinic                           | after an intraoral<br>placement of a SP<br>device         | associated with SP<br>waste<br>• collection,              |
| Impact categories                                                                                          |                                                               |                                                               |                                                           | <ul> <li>management</li> </ul>                            |
| include potential<br>effects on human<br>health, ecosystem<br>quality, climate<br>change, and<br>resources | per day, week,<br>month, or any other<br>temporal description | per day, week,<br>month, or any other<br>temporal description | minutes, hours, days,<br>weeks, months, or<br>years       | deposition                                                |
| CD: averthatic nalyman                                                                                     |                                                               |                                                               |                                                           |                                                           |

SP: synthetic polymer

NMSPs: nano- and microparticles of synthetic polymers

### Results


 >3000 records of which 118 contained data on microplastics relevant for estimating environmental impact



### Eligible outcomes and measures within 5 domains

| <ul> <li>1. Environmental<br/>impact</li> <li>SP items &amp; devices</li> <li>manufacturing</li> <li>procurement</li> <li>handling</li> <li>disposal</li> </ul> Validated life cycle<br>appraisal (LCA)<br>methodology Impact categories<br>include potential<br>effects on human<br>health, ecosystem<br>quality, climate | <ul> <li>2. NMSPs qualities<br/>or quantities</li> <li><b>Pollution, ambient</b><br/><b>air &amp; wastewater</b></li> <li>mass (mg, g, kg, ton)</li> <li>per intervention or<br/>patient or clinic</li> <li>per day, week,<br/>month, or any other<br/>temporal description</li> </ul> | <ul> <li>3. NMSPs qualities<br/>or quantities</li> <li>in waste</li> <li>mass (mg, g, kg, ton)<br/>or the number of<br/>single-use items</li> <li>per intervention,<br/>patient or clinic</li> <li>per day, week,<br/>month, or any other<br/>temporal description</li> </ul> | <ul> <li>4. Monomer elution<br/>or NMSPs qualities<br/>or quantities<br/>in body fluids or<br/>tissues</li> <li>ng/ml, ppm, ppb</li> <li>after an intraoral<br/>placement of a SP<br/>device</li> <li>minutes, hours, days,<br/>weeks, months, or<br/>years</li> </ul> | <ul> <li>5. Monomer elution of NMSPs qualities or quantities in the local environment</li> <li>ng/ml, npm, prob</li> <li>associated with SP waste</li> <li>collection,</li> <li>management</li> <li>deposition</li> </ul> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| quality, climate<br>change, and<br>resources                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                               | Joaro                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                           |
| Studies (n=117):<br>30 primary + 8 SRs                                                                                                                                                                                                                                                                                     | 16 primary + 1 SR                                                                                                                                                                                                                                                                      | 14 primary                                                                                                                                                                                                                                                                    | 30 primary + 13 SR                                                                                                                                                                                                                                                     | 5 primary studies                                                                                                                                                                                                         |

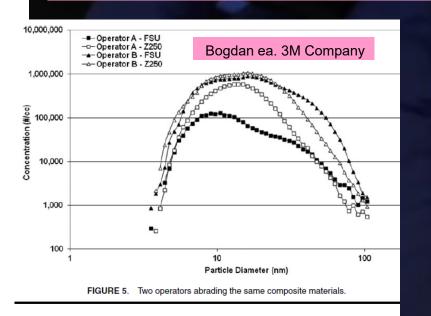
### **Domain 1: Environmental impact of restorative materials production**



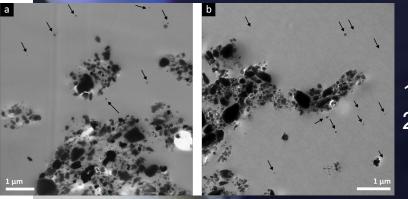
### **Domain 2: Pollution in ambient air or clinic wastewater**

| Air                                                      |                    |                                                                                                                                                                                                                                 |                                                                                    | Waste                                                            | water         |                                                                                                                                                                                             |                                                    |
|----------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Study                                                    | country            | objectives                                                                                                                                                                                                                      | methodology                                                                        | Study                                                            | country       | objectives                                                                                                                                                                                  | methodology                                        |
| Pratt et al.<br>(2023)                                   |                    | To simultaneously quantify airborne concentrations of the<br>bacteriophage MS2 near the oral cavity of a dental<br>mannequin and behind a face shield of the practitioner during<br>a simulated orthodontic debanding procedure |                                                                                    | Binner et<br>al. (2022)<br>Harding et<br>al. (2022)<br>Discorted | Ireland, Cork | To measure the particle load and potential<br>ecotoxicity of the particulate matter arising<br>from a shift to predominately Hg-free dental<br>filling materials in Irish dental facilities | sampling<br>wastewater in<br>a dental<br>operatory |
| Field et al.<br>(2022)                                   |                    | to quantify and characterise the microparticles present within<br>the surgical environment over a one-week sampling period                                                                                                      | Sampling air next to a surgery operatory                                           | Binner et<br>al. (2019)                                          |               |                                                                                                                                                                                             |                                                    |
| Rafiee et al.<br>(2022)<br>Lahdentausta<br>et al. (2022) | Finland,           | To characterise the size and concentrations of particles<br>emitted from 7 different dental procedures<br>To measure aerosol generation in various dental procedures<br>in clinical settings.                                   | Sampling air in a dental<br>operatory<br>Sampling air in a public dental<br>clinic | Mourouzis<br>et al. (2022)                                       |               | To detect monomers that are released during<br>dental restorative procedures and then<br>discharged into the environment through the<br>drainage of the dental unit                         | sampling<br>wastewater in<br>a dental<br>operatory |
|                                                          | Canada,            | To assess the effectiveness of an indoor air purifier on dental aerosol dispersion in dental offices                                                                                                                            |                                                                                    | Polydorou<br>et al. (2020)                                       | -             | To evaluate the release of bisphenol A in<br>wastewater after grinding of RBCs and<br>evaluated three filtration materials                                                                  | Controlled<br>simulation<br>experiment             |
| (2020)                                                   |                    | production of aerosolised dust during routine dental procedures                                                                                                                                                                 | dental operatories                                                                 | Polydorou<br>et al. (2017)                                       | •             | To evaluate the release of nanoparticles in wastewater after grinding of RBCs                                                                                                               | Controlled simulation                              |
| Vig et al.<br>(2019)                                     |                    | To investigate particulate production at debonding and<br>enamel clean-up following the use of orthodontic brackets                                                                                                             | Randomised controlled trial +<br>Controlled simulation<br>experiment               |                                                                  |               |                                                                                                                                                                                             | experiment                                         |
| Van Landuyt<br>2014                                      | Belgium,<br>Leuven | To analyse RBC dust in actual work conditions                                                                                                                                                                                   | Sampling air in dental operatory<br>+ Controlled simulation<br>experiment          |                                                                  |               |                                                                                                                                                                                             |                                                    |
| Van Landuyt<br>2012                                      | Belgium,<br>Leuven | To characterize composite dust in vitro and to assess the clinical exposure                                                                                                                                                     | Sampling air in dental operatory<br>+ Controlled simulation<br>experiment          | N=                                                               | 16 pr         | rimary studies + 1 S                                                                                                                                                                        | R                                                  |
| lreland et al.<br>(2003)                                 | U.K., Bath         | To qualitatively determine whether airborne particles are<br>produced during enamel cleanup at the end of orthodontic<br>treatment                                                                                              | Sampling air in a dental operatory                                                 |                                                                  |               |                                                                                                                                                                                             |                                                    |
| Henriks-<br>Eckerman et<br>al. (2001)                    | Finland,<br>Turku  | To study exposure to airborne methacrylates and natural rubber latex (NRL) allergens during the placing of RBCs in six dental clinics in Finland                                                                                | Sampling air in a dental<br>operatory                                              |                                                                  |               |                                                                                                                                                                                             |                                                    |

"Removing attachments with this composite is so easy" – AlignerFlow LC from VOCO


"Computerized orthodontics" "Aligner" splint (Polyurethane) Postoperative RBC removal RBC UDMA / TEGDMA Fluorescent addition "Removing attachments with this composite is so easy" – AlignerFlow LC from VOCO

"Computerized orthodontics" "Aligner" splint (Polyurethane) Postoperative RBC removal RI UDMA / Fluoresce




'Removing attachments with this composite is so easy" - AlignerFlow LC from VOCO

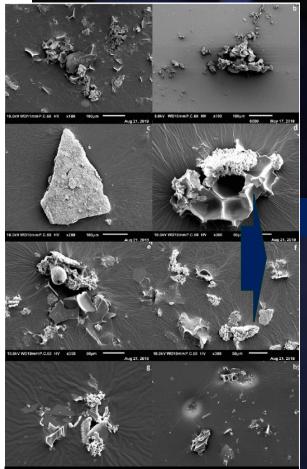
### "Computerized orthodontics" "Aligner" splint (Polyurethane) Postoperative RBC removal



Journal of Occupational and Environmental Hygiene July 2014



RBC UDMA / TEGDMA Fluorescent addition


High suction (Polypropylene tube)

### Grinding polymer-containing devices creates nanosized particles (≥0.3 µm³) Synthetic polymer dust aerosol is hazardous for dental personnel

Van Landuyt ea 2012

use use good suction frequently ventilate the dental operatory wear masks with high particle-filtration efficiency for small particle sizes apply excessive water spray 'Removing attachments with this composite is so easy" - AlignerFlow LC from VOCO

"Computerized orthodontics" "Aligner" splint (Polyurethane) Postoperative RBC removal



SEM photograph: Irish Environmental Agency Harding ea 2022 <u>www.epa.ie</u> RBC UDMA / TEGDMA Fluorescent addition

High suction (Polypropylene tube)

#### Wastewater

Particle sizes: 60% < 5 μm² 80% < 10 μm² 95% < 50 μm²

1. Grinding polymer-containing devices creates nanosized particles (≥0.3 μm<sup>3</sup>)

- 2. Synthetic polymer dust aerosol is hazardous for dental personnel
- 3. Particle release in wastewater impacts aquatic and marine ecology likely negatively

### Domain 3: Waste, containing synthetic polymers

N= 14 primary studies

| Study                                     | country          | objectives                                                                                                                                                                                                                      | methodology                         |
|-------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Martin et al. U.ł<br>(2022) Sh            |                  | To quantify (by number and mass) SUPwaste generated from the provision of oral healthcare in primary and secondary care clinical dental settings in the U.K.                                                                    | Audited waste in the clinic         |
| Haque et al. <mark>Ba</mark><br>(2021)    | -                | To provide an estimation-based approach in quantifying the amount of contaminated waste that can be expected daily from the massive usage of PPE because of the countrywide mandated regulations on PPE usage                   | Audited waste<br>in the clinic      |
| Aghalari et Ira<br>al. (2020)             |                  | To investigate the quantity, quality and management of wastes in general and specialised dental offices in Babol,<br>Mazandaran Province                                                                                        | Audited waste in the clinic         |
| Voudrias et Gr<br>al. (2018) Xa           |                  | To compare the composition and production rate of Greek dental solid waste produced by three dentist groups of<br>Xanthi, Greece                                                                                                | Audited waste<br>in the clinic      |
| Momeni et Ira<br>al. (2017)               | -                | To assess dental waste production rate and composition and approaches used to manage these waste products in 2017 in Birjand, Iran                                                                                              | Audited waste in the clinic         |
|                                           | an, Qaem<br>nahr | To analyse the production of waste in dental offices of Qaem Shahr city, Iran                                                                                                                                                   | Audited waste in the clinic         |
| Mandalidis Groet al. (2018) Xa            |                  | To determine the composition, characterisation and production rate of Greek dental solid waste                                                                                                                                  | Audited waste in the clinic         |
| Amouei et Ira<br>al. (2016)               |                  | to evaluate the quantity and composition of dental waste produced by general and specialised dental offices in<br>Babol City.                                                                                                   | Audited waste<br>in the clinic      |
| Richardson U.I<br>et al. (2016) Ply       |                  | To use an Audited approach to measuring the nature and quantity of dental clinical waste and assessing the feasibility of measuring the financial costs and potential carbon savings in the management of dental clinical waste | Auditeded<br>waste in the<br>clinic |
| Nabizadeh Ira<br>et al. (2014)            | an, Gorgan       | To investigate solid waste production and its management in dental clinics in Gorgan, northern Iran.                                                                                                                            | Audited waste<br>in the clinic      |
| Nabizadeh Ira<br>et al. (2012) Ha         |                  | To identify the constituents, composition and production rate of dental solid waste and associated management<br>practices in dental offices in Hamadan, Iran                                                                   | Audited waste<br>in the clinic      |
| Vieira et al. Bra<br>(2009) Ge            |                  | To evaluate the composition of dental waste produced by three dental health services in Belo Horizonte, Minas<br>Gerais State, Brazil.                                                                                          | Audited waste<br>in the clinic      |
|                                           |                  | To determine the composition and production rate of dental solid waste produced by dental practices in the<br>Prefecture of Xanthi, Greece                                                                                      | Audited waste in the clinic         |
| Ozbek et al. <mark>Tu</mark><br>(2004) An |                  |                                                                                                                                                                                                                                 | Audited waste in the clinic         |

#### **Domain 3: Waste containing synthetic polymers**

|                                                                                                                | Α | Approximate number of dental healthcare<br>professionals (Dentists & Therapists) | ≈ 47,000           |                           |
|----------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------|--------------------|---------------------------|
| Journal of Dentistry 118 (2022) 103948                                                                         | в | Working days per year (40 weeks * 4 days)                                        | 160 days           |                           |
| Contents lists available at ScienceDirect                                                                      | С | Approx. number of operative procedures                                           | ≈ 5 days           |                           |
| Contents lists available at ScienceDirect                                                                      | D | per day<br>Mean number of SUPs per procedure                                     | ≈ 55 items         |                           |
| Journal of Dentistry                                                                                           |   | (including generic PPE, set up and<br>decontamination)                           |                    |                           |
| FLSEVIER journal homepage: www.elsevier.com/locate/ident                                                       | Е | Additional PPE items per procedure<br>(COVID-19)                                 | $\approx 9$ items  |                           |
| ELSEVIER journal homepage: www.elsevier.com/locate/jdent                                                       | F | Mean mass of SUPs per procedure:                                                 | 254 g              |                           |
|                                                                                                                | _ | Procedure specific                                                               |                    |                           |
|                                                                                                                | G | Mean mass of SUPs per procedure: Generic<br>set up and clean up                  | 100 g              |                           |
| Quantification of single use plastics waste generated in clinical dental                                       | J | Mean mass of SUPs: Generic PPE (g)                                               | 30 g               |                           |
|                                                                                                                | К | Mean mass of SUPs: COVID-19 PPE (g)                                              | 305 g              |                           |
| practice and hospital settings                                                                                 | L | Total annual number of SUP items                                                 | A*B*C*D            | $\approx 2$ billion       |
|                                                                                                                |   | (including generic PPE, set up and                                               |                    | items                     |
| Nicolas Martin <sup>*</sup> , Steven Mulligan, Peter Fuzesi, Paul V. Hatton                                    |   | decontamination)                                                                 | Aspecter . D       |                           |
| School of Clinical Dentistry & Grantham Centre for Sustainable Futures, Claremont Crescent, Sheffield, S10 2TA | М | Total annual number of SUP items<br>(including COVID-19 PPE)                     | $A^*B^*C^*(D + E)$ | ≈ 2.4<br>billion<br>items |

Table 5

| А | Approximate number of dental healthcare professionals (Dentists)                      | 1      |       |
|---|---------------------------------------------------------------------------------------|--------|-------|
| В | Working days per year (Grytten ea 2022)                                               | 230    | days  |
| С | Approx. number of operative procedures per day (NTF)                                  | 10     | pts.  |
| D | Mean number of SUPs per procedure (including generic PPE, set up and decontamination) | 55     | items |
| E | Additional PPE items per procedure (COVID-19)                                         | 9      | items |
| F | Mean mass of SUPs per procedure: Procedure specific                                   | 254    | gram  |
| G | Mean mass of SUPs per procedure:eneric set up and clean up                            | 100    | gram  |
| J | Mean mass of SUPs generic PPE (g)                                                     | 30     | gram  |
| K | Mean mass of SUPs: COVID-19 PPE (g)                                                   | 305    | gram  |
| L | Total number of SUP items (including generic PPE, set up and decontamination) A*B*C*D | 126500 | items |
| Μ | Total number of SUP items (including COVID-19 PPE) A*B*C*(D + E)                      | 147200 | items |
| Ν | Mass of procedural SUPs (kg) A*B*C*(F+G) ÷ 1000                                       | 814    | kg    |
| 0 | Mass of PPE SUPs (kg) (A*B*C*J) ÷ 1000                                                | 69     | kg    |
| Ρ | Total mass of PPE SUPs (including additional COVID-19 PPE (kg)) A*B*C*(J + K) ÷ 1000  | 771    | kg    |
| Q | Total mass of SUP waste (kg) N + O                                                    | 883    | kg    |
| R | Total mass of SUP waste (kg) (including COVID-19 PPE) N + O + P                       | 1654   | kg    |

http://doi.org/10.1111/cdoe.12750

Approximate number of SUPs and associated mass (kg) generated in the UK in one year (2020) from routine adult primary care operative interventions carried out by dentists and therapists, excluding associated plastic packaging.

> https://www.ssb.no/en/helse/helsetjenester/stat istikk/tannhelsetenesta

Norge 2024: n= 4480 tannleger

3 451 840 kg 3 956 736 kg 7 408 576 kg

### Domain 4: Monomer eluates / microparticles in bodily fluids from dental devices

| Restorat                    | ions an               | <b>d fissure sealants based on RBC</b><br>10 SRs:                                                                                                                                                |                         | r devic<br>ners   | es containing synthetic<br>N= 1 primary study + 3 SRs                                          |        |
|-----------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------|------------------------------------------------------------------------------------------------|--------|
| Study                       | country               | objectives                                                                                                                                                                                       | Study                   | country           | objectives                                                                                     | method |
| Lopes-Rocha e<br>al. (2024) | t Portugal,<br>Gandra | To gather the analytical methods for the quantification of BPA release of BPA in dental materials in vitro and in vivo (biological fluids) studies                                               | Yazdi et<br>al. (2023)  | Iran, Ahvaz       | To find studies relevant to the biocompatibility of clear aligners and thermoplastic retainers | SR     |
| Sabour et al.<br>(2021)     | France,<br>Clermont-F | To search for BPA release from biomaterials used in orthodontics and to highlight their<br>possible impact on human health                                                                       | Peter et al<br>(2023)   | India,<br>Kerala  | To review the available evidence on BPA release from thermoplastic clear aligners.             | SR     |
| Lopes-Rocha e<br>al. (2021) | Gandra                | To perform an integrative review on the release of BPA from RBCs and potential toxic effects                                                                                                     | lliadi et al.<br>(2020) | · · · ·           | To appraise whether aligners are associated with estrogenic/cytotoxic effects or BPA and       | SR     |
| Paula et al.<br>(2019)      | Portugal,<br>Coimbra  | To systematically review randomised controlled trials, cohort studies and case-control studies that evaluated BPA levels in human urine, saliva and blood                                        |                         |                   | monomer leaching                                                                               |        |
| Löfroth et al.<br>(2019)    | Sweden,<br>Malmø      | To identify if direct dental filling materials are liable to leak BPA and (2) investigate if this leakage could lead to adverse health effects.                                                  | Raghavan<br>et al.      | India,<br>Chennai | To evaluate and compare the BPA levels in saliva in patients using vacuum-formed               | RCT    |
| Marzouk et al.<br>(2019)    | USA, New<br>York      | To review clinical studies that have measured urinary BPA concentrations before and after dental treatment to evaluate the extent to which individuals are exposed to BPA from dental treatment. | (2017)                  |                   | retainers or Hawley retainer                                                                   |        |
| Halimi et al.<br>(2016)     | Morocco,<br>Rabat     | To present an SR regarding the issue of BPA release by orthodontic materials and its impact on orthodontics                                                                                      |                         |                   |                                                                                                |        |
| Kloukos et al.<br>(2013)    | Switzerland,<br>Bern  | To assess the short- and long-term release of constituents of orthodontic adhesives and polycarbonate brackets in the oral environment                                                           |                         |                   |                                                                                                |        |
| Kloukos et al.<br>(2013)    | Switzerland,<br>Bern  | To assess the short- and long-term release of BPA in human tissues after treatment with dental sealants                                                                                          |                         |                   |                                                                                                |        |
| Azarpazhooh e<br>al. (2008) | t Canada,<br>Toronto  | To investigate whether the placement of pit and fissure sealant materials causes toxicity and thus harms patients                                                                                |                         |                   |                                                                                                |        |
|                             |                       |                                                                                                                                                                                                  |                         |                   |                                                                                                |        |

### Domain 4: Monomer eluates / microparticles in bodily fluids from dental devices

Restorations and fissure sealants based on RBC

N= 29 primary studies (1996 – 2023): several generations of innovative analytic technologies

#### Degradation products of resin-based materials detected in saliva in vivo

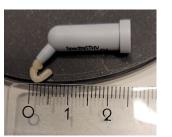
Philippe Vervliet<sup>1</sup> · Siemon De Nys<sup>2</sup> · Radu Corneliu Duca<sup>3,4</sup> · Imke Boonen<sup>5</sup> · Lode Godderis<sup>3</sup> · Marc Elskens<sup>5</sup> · Kirsten L. Van Landuyt<sup>2</sup> · Adrian Covaci<sup>1</sup>

Received: 20 October 2021 / Accepted: 29 April 2023 / Published online: 5 December 2023 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

#### Abstract

**Objectives** Dental composites remain under scrutiny regarding their (long-term) safety. In spite of numerous studies on the release of monomers both in vitro and in vivo, only limited quantitative data exist on the in vivo leaching of degradation products from monomers and additives. The aim of this observational study was for the first time to quantitatively and qualitatively monitor the release of parent compounds and their degradation products in saliva from patients undergoing multiple restorations.

Materials and methods Five patients in need of multiple large composite restorations (minimally 5 up to 28 restorations) due to wear (attrition, abrasion, and erosion) were included in the study, and they received adhesive restorative treatment according to the standard procedures in the university clinic for Restorative Dentistry. Saliva was collected at different time points, starting before the restoration up until 24 h after the treatment with composite restorations. Saliva extracts were analyzed by liquid chromatography–mass spectrometry.

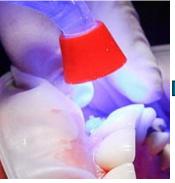

- Quantitatively monitor the shortterm release of monomers and their degradation products in saliva samples collected from adults undergoing multiple composite restorations
- Liquid chromatography tandem mass spectrometry +
- High-resolution mass spectrometry to identify additional degradation products

### Domain 4: Monomer eluates / microparticles in bodily fluids from dental devices

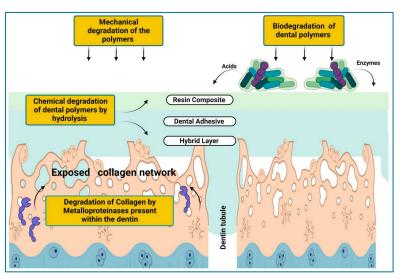




0.25 g monomer per polycarbonate compule




| CAS: 41637-38-1                                                                      | Esterification products of 4,4'-<br>isopropylidenediphenol, ethoxylated and 2-<br>methylprop-2-enoic acid<br>Skin Irrit. 2, H315; Eye Irrit. 2, H319; Skin Sens. 1,<br>H317; STOT SE 3, H335; Aquatic Chronic 4, H413 | ≥2,5-<10%     |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| CAS: 109-16-0<br>EINECS: 203-652-6                                                   | 2,2'-ethylenedioxydiethyl dimetharcylate<br>Skin Sens. 1, H317                                                                                                                                                        | ≥2,5-<10%     |
| CAS: 13760-80-0<br>EINECS: 237-354-2                                                 | ytterbium trifluoride<br>Skin Irrit. 2, H315; Eye Irrit. 2, H319; STOT SE 3,<br>H335                                                                                                                                  | ≥ 2,5 - < 10% |
| CAS: 1565-94-2<br>EINECS: 216-367-7                                                  | (1-methylethylidene)bis[4,1-phenyleneoxy(2-<br>hydroxy-3,1-propanediyl)]bismethacrylate<br>Skin Irrit. 2, H315; Eye Irrit. 2, H319; Skin Sens. 1,<br>H317                                                             | ≥0,1-<1%      |
| CAS: 10287-53-3                                                                      | Ethyl-4-dimethylaminobenzoat<br>Repr. 1B, H360; Aquatic Chronic 2, H411                                                                                                                                               | < 0,25%       |
| CAS: 131-57-7<br>EINECS: 205-031-5                                                   | oxybenzone<br>Skin Irrit. 2, H315; Eye Irrit. 2, H319; STOT SE 3,<br>H335                                                                                                                                             | ≤2,5%         |
| CAS: 128-37-0<br>EINECS: 204-881-4<br>Registreringsnummer: 01-<br>2119565113-46-XXXX | 2,6-di-tert-butyl-p-cresol<br>Aquatic Acute I, H400; Aquatic Chronic I, H410                                                                                                                                          | ≥0,025-<0,25% |


### **Resin-Based Composite restoration**

1. Dental adhesive on tooth surface («Dentin hybrid layer») 2. Monomer placement 3. LCU polymerisation

50-80% monomer  $\rightarrow$ polymer conversion



Restoration Flash removal Contouring Finishing Polishing



From: Mokeem et al. 2023 doi: 10.3390/biomedicines11051256

#### Wear particle sizes 0.3-0.7 µm<sup>3</sup>



### Conclusions

- 1. The use of different polymers in dental care clinics is frequent and in large amounts, with a largely unknown environmental impact.
- 2. There is a void of studies on microplastics and monomer elution secondary to resin-based composite degradation intraorally and environmentally.
- Mitigation strategies for handling waste and reducing single-use plastics must address better practices, including reusing devices and recycling.

### Thank you!

Foto: Anne M. Gussgard

#### Indirekte RBC etter fremstilling, mikrostruktur, polymerisering og hovedsammensetning

|                          |                   |                                   | Manufacturer              | Main Composition               |                                            |                                                                                                                           |
|--------------------------|-------------------|-----------------------------------|---------------------------|--------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Manufacturing<br>Process | Microstructure    | Polymerization<br>Mode            | Material                  |                                | Matrix                                     | Filler                                                                                                                    |
| Artisanal                | Dispersed Fillers | Light                             | Ceramage &<br>Ceramage up | Shofu                          | UDMA (+ HEMA in opaque paste)              | Silica-based glass                                                                                                        |
| Manuelt                  |                   |                                   | Gradia                    | GC Corp                        | UDMA + other DMA                           | Unknown                                                                                                                   |
|                          |                   |                                   | Signum                    | Heraeus Kulzer                 | Unknown DMA                                | Silica + composite (74 wt%)(64 wt% silica-based<br>glass+ silica in Signum flow)                                          |
|                          |                   |                                   | Sinfony                   | 3M-ESPE                        | UDMA + other DMA                           | Silica-based glass +silica                                                                                                |
|                          |                   |                                   | Solidex                   | Shofu                          | UDMA                                       | Unknown                                                                                                                   |
|                          |                   |                                   | SR Nexco                  | Ivoclar-Vivadent               | UDMA + other DMA                           | Silica (10-50 nm) + composite (for liner<br>and opaque : + zirconia + silica-based glass)                                 |
|                          |                   |                                   | VITAVM LC                 | VITA Zahnfabrick               | BPA + TEGDMA +<br>other DMA                | Unknown                                                                                                                   |
|                          |                   | Light + temperature<br>complement | Estenia C&B               | Kuraray                        | Unknown DMA (+Bis-<br>GMA in opaque paste) | Silica-based glass + alumina (2 µm and 2nm)<br>(92 wt% / 82 Vf%)                                                          |
|                          |                   |                                   | SR adoro                  | Ivoclar-Vivadent               | UDMA + other DMA                           | Silica-based composite                                                                                                    |
|                          |                   |                                   | Twiny                     | Yamamoto, Precious<br>Metal Co | UDMA + TEGDMA                              | Silica (20-100nm) + zirconia-, alumina-, silica-<br>particles (200-600nm) + zirconia- aluminasilica-<br>clusters (1-6 μm) |
| Industrial               | Dispersed Fillers | Light                             | Paradigm MZ 100 block     | 3M ESPE                        | Bis-GMA + TEGDMA                           | Silica (0.6 µm) + zirconia (0.6 µm) (85wt%)                                                                               |
| CAD-CAM                  |                   | HT                                | Cerasmart                 | GC America                     | UDMA + other DMA ª                         | Silica-based glass + silica (20 and 300 nm (71wt%) $^{\rm a}$                                                             |
| CAD-CAM                  |                   |                                   | Lava Ultimate             | 3M ESPE                        | UDMA                                       | Silica(20 nm)+zirconia(4-11 nm)+zirconia-silica<br>clusters(0.6-10 µm)(79 wt%)                                            |
|                          |                   |                                   | Shofu block HC            | Shofu                          | UDMA+TEGDMA                                | Silica-based glass + silica (61 wt%)ª                                                                                     |
|                          | PICN              | HT/HP                             | VITA Enamic               | VITA Zahnfabrik                | UDMA+TEGDMA                                | Glass-ceramic sintered network (86 wt%/ 75 Vf%)<br>Fra: Oudkerk 2024                                                      |

Fra: Oudkerk 2024